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ABSTRACT

}The ratio estimator can be justified by a linear superpopulation model

without intercept and the error variance proportional to the size of the
covariate. If either of the assumptions is violated, then other estimators
may be considered. We study the consistency of several estimators which are
based on different assumptions about variance structure of the error. Some
decompositions of the finite population are introduced. Roughly speaking, we
fit a weighted regression line to the finite population with the weight chosen
according to the estimator under consideration. We show that any estimators
in that class, except the ratio estimator, are inconsistent unless some
conditions on the population's characteristics are satisfied. Based on the
decomposition, modifications can ba made to get a consistent estimator. For
the case of p-auxiliary variables, we characterize the class of consistent
weighted least squares estimators. The result is extended to the infinite
population problem using a completely different approach./f
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oy ]
- In estimating the population mean of a character of interest, we often ]
,}} make use of an auxiliary covariate which is already available. Ratio d

ol estimator is one of the commonly used estimators in survey sampling. The

*t ratio estimator can be justified by a linear superpopulation modzl with

fi ) certain error structure assumptions. If some of the assumptions are violated,

then other estimators may be considered. We study the consistency of several
: estimators which are based on different assumptions about variance structure
~i§ of the error. Some decompositions of the finite population are introduced.
QE: We show that the ratio estimator is the only consistent estimator in the
n, "~
b class. Based on the decomposition, modifications for other estimators can be
4 made to be consistent estimators. For the case of p-auxiliary variables, we
,f show how to choose the right weight for the weighted regression estimators to
i
.“: be consistent. The result is extended to the infinite population situation.
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CHARACTERIZATION OF THE CONSISTENT WEIGHTED REGRESSION ESTIMATORS

Lih-Yuan Deng*

1. Introduction

Conside: a finite population consisting of N units with values (y;, x;), where x;
is positive and known for 1 Si S N. A simple random sample of ‘ize n is chosen
without replacement from the population. Denote the sample » . ,opulation means
of yand x by y,Xand Y, X respectively. The ratio estimator

Vo= LX
X

is the most commonly used estimator of Y. It is the best linear unbiased predictor of

Y under the following superpopulation model ( Brewer, 1963; Royall, 1970)

yi=Bx+ g (L.1)

O Wi if i=j
Ev(e)=0: Em(&&=lp  jrjiaj
with w; = x;, where Ey; denotes expectation with respect to the superpopulation

model (1.1).

If the variance of ¢; is not proportional to x;, one may consider the best linear

unbiased estimator (BLUE) of Y

DX Yi
e = U N T
yw=5;TX= Bw X, (1.2)
—_
= Wi

where ﬁw is the weighted least square estimator of B in (1.1). In particular, for w; =

* Agsistant Professor, Department of Mathematical Sciences, Memphis State
University, Memphis, TN. 38152,

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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1, we have

-

Ye

n
XY
i=l

g X. (1.3)
x.
gl i

For w; = x;,we have Jg. For w; = x2, we have

: 1 8%

Yo =— Y—X.

Yo =7 5. % (1.4)
Royall(1970) took a different approach to the estimating problem for Y. He

showed that

y=fy+0-HDpy X% 15)
is the best linear unbiased predictor ( in contrast to estimator ) of Y under superpo-

pulation model (1.1), where f = n/N is the sampling fraction, and

L=(NX-nX/N-n).

It is easy to see the difference between the two is

Y- Yw =H7- Bu®. (1.6)
From (1.6) one can easily see that

Y- Vo —0asn - oo,

either model (1.1) is true or f —— 0 as n —— . In practice, the sampling fraction is
indeed very small. In either case, this implies y and ‘Yw are asymptotically

equivalent. The same remark can be applied for ‘Yc and AY,, .

It is well-known that ¥y is a consistent estimator of Y. We will first study the

asymptotic properties of y.,y, in Sections 1 and 2. More general results for AYW

...............
------------
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are obtained in Section 3. In fact, we can show that Y‘R( w; = Xx;) is the only con-

sistent estimator of Y among ¥, . We also show that Y » Yn can be consistent esti-

mators of Y, provided that some conditions on the population characteristics are

satisfied. Based on these , we can easily modify AYC » ¥n to get consistent estimators
of Y. A useful decomposition of the finite population is developed. In Section 3, we
extend the results in Section 2 to the case of p-dimensional auxiliary variables. Lastly,
similar properties can be found for the case of infinite population in Section 4. The

techniques used are quite different from those in the previous sections.

The asymptotic behavior of an estimator will be studied under the traditional ran-
domization distribution generated by repeated sampling form a fixed population
according to simple random sampling (s.r.s). Following the usual formulation of
asymptotic theory in finite population (see for example, Scott and Wu, 1981; Isaki and
Fuller, 1982 ), we embed our finite population in a sequence of populations { U, }
indexed by v with population size N, and a a simple random sample of size n,,
where 0 < Ny < Ny <.. and UjcUycU;:--- . Let a sequence of samples { s, }
of size { n,} be created from the sequence of populations { U,} by a sequence of
designs, where n; < ny<...and n, < N, for all v. Note that while the sequence of

populations is nested, the sequence of samples is not.

Let the population U, consist of N, units with values { (y;, x;), i=1,.., N, }.
The population mean X, of the auxiliary variates is assumed known. Y, denotes the
population mean of the character under study. Let X,, Y, denote the sample means of

x and y based on a s.r.s. without replacement ( srswo ) of size n, drawn from popu-
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lation U,.

For a general sampling scheme, Isaki and Fuller(1983) gave a sufficient condi-
tions for the Horvitz-Thompson estimator to be consistent. For the simple random

sampling, Lemma 1.1 below is a corollary of Lemma 1 of Isaki and Fuller(1983).

Lemma 1.1. Let { z;} be a fixed sequence, and satisfies the condition

1 N =
(- Z) <M< ooforallv. (1.5)
v i=1
Then
=~ 7 05 - 1 & 5 1 N
z,- Zv= op(nv ), where zv=_zzla“dz\!= Zzl’ (1.6)
Ny =1 Ny &

Throughout this paper, we will assume that for any "reasonable” function g ,

z; = g( x;, y;- w;) will satisfy condition (1.5).

2. Asymptotic Behavior of :y'c , AY,, and :y‘w

2.1. Asymptotic Behavior of :y‘c

We can fit the regression line to the finite population { ( y;, x;),i=1,2,.., N, }

Yi= Oy + Bc,v xi+ d;, 2.1)
where
N, _ _
Z( X; - Xv)( Yi- Yv)
Bc,v = =l N, (2-2)
Z( X; - iv)2
i=1
and

Rl o Pl S




Oy = ?v - Bc.v i-v ’ 23

di=y- Ocv - ﬂc.v Xj . (2.4)
It is straightforward to see { d, } satisfy the following
N, N,
3>d=0,Ydx;=0. (2.5)
=l i=1
We can use the decomposition in (2.1) to characterize the asymptotic behavior of
Ny
. 2} X; ¥i
Yc,v = ;.:— Xv . (2.6)
2 x;2
=1

Theorem 2.1.

2

(a) Yc,v - ?v v[ = (2)

——5-1+ Oy(n, ).

®) Ve - Yo 25 0,if lim og, =0,
V——0o0

where

2 1 T2 ¥ @ 1 .2
sx,v = N.—1 2( x;- X)), X, = 2 X
vl =1

Proof. Using (2.1) and (2.6), we have

- o T . 5 % @ __1 & o2
Yoy = Qv "oy Xy + Bey Xy + 0 X, , where X, = Y X .
Xy Xy Ny 1
This together with Y, = Oy + [Sc v Xy , implies
1 &
- X, T Z % 4 27
— -_— v v =l v .
)IC,V - YV ac,v[ (2) xv l] + _l(z) xV' ( )
v xV
F 2.7), — 3 -0.5 Xz X! 05
rom(.),—;;hzlxidi= Op(n,~") . and 3(“,(2) Xv=—§ﬁs—+ Op(n, 7)), we
.-5.
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X,V

have Part(a). Part(b) follows from Part(a) and —3(_—(2)— <1.0
v

From Part(a) of Theorem 1, the leading term of ‘Yc,v - Y, depends only on the
sign of @, the intercept of the regression line. If oy >0 (< 0), then :Yc',, has a

positive ( negative ) bias of constant order. If o, ,—— 0 as v—— 0, then y., isa

consistent estimator of Y,. In practice, 0,y is of course unknown. However, we can

estimate «, consistently by using the sample analog &c,v of o, in (2.1). Itis easy

-

to modify Y., to get a consistent estimator of Y,. For example,

. S2 . . s2

— Y — X . . Ev3 .
Yev + O V—_—’g)— and y., + acv———(z‘; are consistent estimators of Y,, wuere
] £ xv i ’ .iv

S%v’ Yv(z) are the sample analogs of Sf_v, iv(z) .

2.2. Asymptotic Behavior of ‘Yh,v

We need a different decomposition of the population for studying the asymptotic

behavior of

o 1 &Y.
Yoy == /)X, . (2.8)
v =l X{

Fit a weighted regression line with weight proportional to x; ! to the finite population

U,

Yi= Opy+ Bpyxi+ di, 2.9

where

e o o o




Using the above decomposition, we can find the leading term of ‘Vh'v - Y,

Theorem 2.2.

@ Fhy - Yy = 0ol Xy X,V - 1]+ Op(n,0%).

®OIf lim X,V < oo, then :y’h',, - Y, 0, if oy —> 0asv——o e,

V——poo

—_— Nv
where X,V = ! Y x!.
NV i=1

Proof. From (2.8) and (2.9), we have

hv h,v n, 5 x v A Y n, S x v

This together with Y, = oy, + B,y X, implies

= 3 - ¥ 1 &4 -
Yhv - Y, = ah,v( Xy Xy-D+ 2_ Xy -
Ny o1 X
Part(a) follows from the above expression and iv("l) = fv('l) + Op( nv—o.s)'

o, .
; z% = O,(n, %) . Pari(b) follows immediately from Part(a). O
v =1 M
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From the Jensen’s inequality, we can see that X, X,O - 1> 0. Therefore, the
sign of the leading term of ‘Yh.v - Y, depends only on a, , the intercept of the
weighted regression line. If oy, >0 ( <0 ), then %’h,v has negative ( positive ) bias of
constant order. Theorem 2.2 not only gives a condition for AYh'v to be consistent but

also indicates how to modify Yy}, to get consistent estimators of Y,.

Y 2.3. Asymptotic Behavior of :Yw,,,
To study the asymptotic behavior of
° i‘: X; ¥i
“ = R 13
Ywy = E Xiz \ ) (2.13) ! 2
=1 Wi e
. we need the following decomposition of the finite population
| - Yi= aw,v wj + Bw,v Xj + d‘l ’ (2°14)
L where d; satisfy the following
o
- N, N x; d;
= >d=0y——=0. (2.15)
o i=1 =l Wi
:‘.;'. Note that if the vector of { w;} and the vector of { x;} are linearly independent, then
®
":} Qv Bwy Will be uniquely determined under ccndition (2.15). We can obtain
'.:j'. a, . Bwy by fitting the weighted least square line as in (2.14), with the weight pro-
0 portional to w;. Using the above decomposition we can show the following theorem:




Theorem 2.3. If a,,, By,y can be uniquely determined in (2.14), then

. _ X2 .
@ TVuy - Yy = o l—x - W1+ Oy(n,09).
Nv-l z Xiz Wi-l

=1
X2 _
(o) N - W,1<0,forall N,.
N Y x? wit
=l

N,
©If lim Wy<eand0< lim —— 3 x? w! <o,
V——poo V——peo v &1

then ‘Yw.v - ?,,—"—)O,if Oyy——>0asv-— o,

— 1 N,
where W, = N Y W
v il

Proof. From (2.13) and (2.14), we have

n,
-1 -1
_ o 3wl x
- v = =1
Ywy = Oy o, + Bw,v xv + o,
-1 -1.2 -1 -1,.2
no X WX no Y WX
=1 =1
From this and Y, = o, W, + By, X, , we have
1 -1
'x— nV Z wi— xl dl
- = v o= i=1
Ywyv - Y, = aw,v[ ny Xy- Wi+ o
-1 -1,2 1 -1.2
no Y WX no Y WX
)| =1 K
Part(a) follows from the above expression and i
R
1 & x4 »
—_— Z_'_ = Oy n,03) "
Ny i=1 Wi

x

Part(b) follows from the Cauchy-Schwartz inequality. Part(c) follows immediately

from Part(a). O
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: I:}_Z From Theorem 2.3, we can see that the leading term of y,, - Y, depends only

2

on a,,, the "intercept” of the regression "line” in (2.14). Moreover, If a,,,>0(<0

” ) , then “Yw’v has negative ( positive ) bias of constant order. Theorems 2.1 and 2.2

are special cases of Theorem 2.3 with w; = 1 and w; = x;2. However, Theorems 2.1

(5

and 2.2 give the explicit formulae for the leading term bias of %/‘c and ‘Yh in terms of

the usual regression decomposition of the population.

3. p-dimensional Auxiliary Variables

L

X “
o In Section 2, we assume that only one auxiliary variable (x) is available. Estima-
e ‘
L _— o :
o tors like ¥y, = Pwy X, are justified by the superpopulation model (1.1). The
L regression estimator is another popular estimator of Y,. It is the best linear unbiased
S
e predictor under the following superpopulation model (Royall, 1970)
LY
2
R Yi=a+Bxi+ g (3.1)
o O% Wi if i=j
o Em(&)=0; Em(&&)=]o  ifj«;
.:j:'.ﬂzj with w; = 1.
ok
: If the constant variance assumption is in question, one may like to consider an estima-
ey —
5N tor of Y, which is based on the weighted least estimator of o, with some weight w;.
g
: o As we have seen in Section 2, not all kinds of weight will give us consistent estima-
: tors. As a matter of fact, in Section 2 the only weight we may choose such that Yy, ,
'j:. is consistent is w; = x;. We may ask the same question for the weighted regression
é" estimators. More generally, for more than one auxiliary variates, the commonly used
RS
3o

. «10 -




-
L i)

«
g

é ; estimator is the multiple regression estimator. We may again consider = ~eighted least
1\.' square estimator for p-auxiliary variables. We would like to know what kind of weigkh.t

will result in a consistent estimator. If the weight does not give consistent estimator for

E all populations, we would like to characterize the leading term of the bias in terms of
o some simple population characteristics so that we may modify the estimator to get a
\
M consistent estimator. We would like to extend the results in Section 2 to the case of
-,j several auxiliary variables. Some notations will be introduced.
Consider a finite population U, indexed by v with population size N, and a sim-
‘: ple random sample (s.r.s.) with size n,. Let X;,X,,..X;, be the p-auxiliary variates
) —

N which are correlated with character Y. The purpose is again to estimate Y,, the popu-
q

- lation mean of the variable of interest. Under simple random sampling, a sample
- (ys, Xs) of size n, is chosen, where Ys, = i, »Yiys * " 5Yi .,)' ,
D)

X, = (’-(i, ’ )fi,’ T ).(in.)" )Si = (KypXai = Xpi)'
Consider a general class of weighted least square estimators

. ywv = x ( x W -1 xs,)-l x ws, Ys, = xv ﬁwv (3'2)
.-

&~ where

>

: gLk

s W, = diag(w; ,w; ,---w; ), X, = X.

;,: LH''lh l'b \ 4 Nv FZI -i

- and w; > 0 is the weight associated with unit i.

5

P Note that ratio estimator is a special case of (3.2), with p=1, w; = x;, and the
z 1egression estimator estimator is also a special case of (3.2), with p=2, w; = 1, and the
9
& first column of X matrix is all 1 ’s and the second col.mn is X|s.
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An important question one may ask is that what kind of weight W; we can
choose such that .Yw,v will be a consistent estimator for Y, ? If ‘7‘” is not con-
sistent we would like to find the leading term of Y, - Y, in terms of some simple

population characteristics. Hence, one can modify Yy, , to get a consistent estimator

of Y,.

To characterize the asymptotic behavior of AYW.V , we need the following decom-
position of the finite population U,

Yy = Xy By + Z, v + 4, (3.3)
where

Zv = (wl,wz,...,w N,)’ , Wv = diag(wl,wz,...,w N,)' (34)
and
Yv = ()’1,)’2,-",)1 N')’ ’ dv = (dlvd ,--.,d N')' ’
Xv = ( ¥l’ 52’"-9 ¥ N')' ’ )51 = (xli9 X2i» xpi)’ .
Note that B, and 7, will be uniquely determined, if Z, is not in the column space

of X, , the dimension of the column space of X, is p, and

X,’W, 14, =0 (3.5)
and
’ -1 Nv
Z,’W,d, =1y,"d, =Y ¢=0. (3.6)
i=1
Here is our key Theorem.
-12.
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\ Theorem 3.1. Assume that ( X, ' W, ~! X, ) is non-singular, for all v.

(@If1y € col (W, 1X,),then

~ ‘YW.V - -Y—V =(Yv- ?v) - (%, - 3(.-v) ﬁw.v + Op( nv—l)

WS where 1y, =(1,1,.,1)". .Yw.v is then obviously a consistent estimator of Y.

e b)If1y, € col (W, 1X,),then

- — _ -1 _ —
’ Ywy - Yv=1 xv(% Xy W, TX,) X- Wiy + Op( “v-o's) » (3.7)

where

— -l— ——
[xv(lfI X,'W,1X,) X/- W,]<0, forallv. 3.8)

- v
\:J " _
3 Yuy - Yy——>0,if 3, —>0asv — eo.

L ' Proof. Note that

:;:t:; Yw.v = Xy Bw,v -(%Xy - .iv) Bw,v . (39
b The assumption of Part(a) implies 1, ‘=c¢’X,” W, for some c, from which, we

2

have

"" fl"

»
1

NS

-,

@
<

==X Wy, =7. (3.10)

|
= -

LB

1

W
et

Note that

P

-
.‘J.'n‘ .l.
o N

¢

1 ’ - 1 ’ -
— (XWX == (X W X)) 4 00, ™) 3.11)
v

v

!

%0

and

» *
ol
.

L"‘ Y'. ". v, ‘
]

-13.
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ooy ” =

‘:\..
2 (S

®
oo 1 r g -1 1 ' -1 05
."\;:' _n- xn, ws, Ys, ="'N_' xv wv y« + Op(nv ) -

"\_):, v v

ot Since ( X, ' W, "1 X, ) is assumed non-singular for all v

tey

<N L (X W, X0 == (X W X)) 05

.:‘ [Tv-( sy Vs, 3,)] =[Nv( v v v)l +Op(nv ),

o which implies

)

*h:? Bw,v = Bw,v + Op( nv-O.S) . (3.12)

f::_i Part(a) follows from (3.10) and (3.12). To prove Part(b), we will use the decomposi-
b tion (33). Note that 1y, €col( W, X,) implies Z, = W, 1y, ¢col(X, ).
:‘:i:i Therefore, the coefficients P, , vy, in the decomposition (3.3) will be uniquely deter-
mined. Using (3.2),(3.3)and W, Z, =1, , we have

. |

N Yoy = X By + XU XS W X) 0 X, '
2 + KX WX X WG
. From (3.3) and (3.6), it is straightforward to see

1y

i:;\:.:‘ YV=XVBV+ZV‘YV +0= YVBV-’-WV‘YV’

Taking the difference, we get

q::" = v bvg 1 ’ 1 -1 w
; :::': Ywy - Yv = [ XV(T Xs' W,'“ Xs') Xy - Wv] Yv

:t;_. v

:&;; i 1 ’ -1 X -1 1 ’ -1

® + X(— X W7 X) (T X5, W5, dy) (3.13)
¥ v'T- v v [
- Using (3.11) and
L ;\::{" ‘
N 1 P 1 ray —
e o X, W, ld, = N X, W, ld, + Oy(n, 0% = 00,0, |

‘ q

o it is easy to see last term of (3.13) is Oy( n,%%). (3.7) follows from (3.13) and X, - ;
‘Gl !
o X, = 0,(1*%). And (3.8) holds because




B 2 l ’ - -l_'
wv' xv(? xv wv lXv) xv

v
1
Nv

lN,'(wv - xv(xv'\vv-lxv)-l xv')lN, !

r:r [’ (1- M(MM)M) ¢] 20,

v -
where M= W, 12X, ,c= W, 21 and I- MMM) M’ is a positive semi- ]
definite matrix. O i

Wright(1983) considered a class of asymptotically design-unbiased (ADU) predic-
tors under a general sampling design, our conclusion in Part(a) is the same as his

Theorem 1. However, Part(b) of our Theorem 3.1 uses some simple population charac-

teristics to characterize the leading term of ¥, - Y, when 1y_ is not in the column

space of W, ~! X, . From Part(b), we can then easily construct some new consistent

estimators of Y,. For example, let 'f,, be the sample analog of v, , then AY,,,'., - o

— -1_ . —
Xv[(—lll— X, W, 1X,) X,- W7, is a consistent estimator of Y,.
v

4. Characterization of a Class of Consistent Estimators in Infinite Population

To characterize a class of consistent estimators for infinite populations, the tech-
niques used in Section 2 for finite population are not appropriate. A completely
different approach will be taken. The asymptotic framework for the infinite population

is the standard one. Therefore, the notation is simpler.

Let (Y;, X ) be an i.id random vectors with distribution F(Y, X), i=1,2, .. , n,
= o

where Y; is the variable of interest and X is a p-dimensional variables. The joint
~1

distribution F of Y and X need not to be known. The main purpose is to use both X

-15.
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and Y to estimate E(Y) = p,, where E denotes the expectation.

./‘r*r'\- d . A.,v

-

5 8

Consider a class of estimators

N

-

My = B AVTIA) TAVIY - n' B (4.1)

AT,

- e

where u is any consistent estimator of E( X), i.e.
ol h

-

» B = E(X) + o)

:.j g ¢ ~

- and

- . 1

L B =AVIATAVIY Y =(Yy, -, Y,

Y, ~w -8 ~s

=

& App = (X, X, -, X), X =@, o Z)’

° ~1 -2 ~n ~i

: V = diag( W,;, W,,., W), W;=g(X ) for some function g. o
b*. 1 -3
VAN s
(> Note that the estimator in (4.1) is appropriate, if -
' -4
::_ Y; = X{ 9 + &, 4.2) ' f’q
where §; are i.i.d. with mean zero and finite variance. Since B is the weighted least
.. ~w -
2 al
estimator of B, it can be shown that B is a consistent estimator of P under (4.2),
1 N ~ ~w -~

h for any choice of weight W,. However, if (4.2) is not the true model, say there
2 should be a Z variable in the model
® , ,
2 Yi= X7 B+ 277+ &, 43)

° then B will not be consistent for f under (4.3 ), unless X and Z are “orthogonal".

&

':,E But }:ly will still be a consistent estimator for E (Y ) even if (4.2) is not the true
: model provided we choose the "right" weight W,. It is our purpose in this section to

e

[ SV N
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characterize the weight W; such that p., will be consistent for estimating E(Y ).

In the context of survey sampling, the X variable is called the auxiliary variable.

Hence, usually the marginal distribution of X is known, or E (X) is available. In

that case, we may choose u = E (X)), and the estimator in (4.1) becomes
o 2

by = E(X)'AV'A) TAVY |
= i |
which is similar to -7',,.‘, in Section 3.
Let X = (Zy, Z,,.., Z;)’ where Z;, the first component of X, has the same distri-

bution as Z;’s, and Z, has the same distribution as Z,'s, .. etc. Let

W = g( )-() = g((Z,, Z,,.., ZP)') be a real random variable. W,’s are i.i.d. with the same

distribution as W.

We will impose some mild conditions on the random variables Z; s, W and Y.

(A0) = E(X) + o)D),

| z. z |
(A1) E(/ L4 P<.,, for all i,j=1,2,...p,

| W ]

I Z,Y } -3
(A2) E( ) < oo, for all j=1,2,...p, .

W | F P e

~=EW™ X’X) is a non—singular matrix.

ij

(A3) [E(I ZZ I)]
| W |

Before stating our key Theorem, let us derive some properties of ﬁy based on

these assumptions.

1
.':\
Y
e
v. ~
Y
ES
« 3
. K
o1
I--.‘
-\1
-
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L4
1, .r_.‘
;_;? From (A1) and the Weak Law of Large Numbers,
£
AL 1 1 1 2 A s 1
Yo —(AVIA) == I W7 X'X =EW'X'X)+ ox(1) .
! n n ~ioTi - -
ti&j Using this and assumption (A3), it is easy to see
=¥ -1
W & @via) = EW X0+ o). a8
)
;- 3 From (A2) and the Weak Law of Large Numbers,
1 L
o — AV ==Y WIX'Y, =EWXY)+ oyl). “.5)
J B n i n =1 ~i -
_.( " Combining (A0), (4.4) and (4.5), we have
o - 1 11
'.'." = ’ = l . - 'v—lA - A'V_IY
L Hy Ex Ew (E(X) + o,1)] [(n (A )) (n _s)]
®
3 = E(X)’EW X X EW™ XY) + o) 46)
',.-‘.:‘3: Now we are ready to state our key result.
e
LN
\x.J Theorem 4.1. If assumptions (A0)-(A3) hold, then
i,
S by = g (AVIA) TAVTY By E(Y)
4\) ~xX ~8

if and only if

4
W=ﬁ{cj71-forsome ¢i's.
’=

0w

Proof. (i) Sufficiency: From (4.6)

P ' - Py
At A A AT e
LA AN . .

. “r e .

A‘v
AR
Gl

iy = E(X)EOW X X)TEW XY) + o(D)

et
K

RO

= E(X) EW™ X' X)I C [C EW™! X'V)I+ o,(1), 4.7)

-
NS NND

where C is any non-singular matrix with the first row equal to ( ¢, c,,.., ¢p)- Note

2@

that

]

A A

COLIN
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~, c; ¢, Cp E( w-l ZIY) E(Y) 1

1 .. EOWT YY) , o

C EW!'XYV=|" ' = _ J {4.6)
. oo JEW ZY)

ﬁ ‘ and

. E(Z)E(Z) E(Z) |

, E(W!'X X)'Cl=[CE(W!X' X" = o , (4.9)

% which will be denoted by B~!. From (4.7)-(4.9), we get
: E(Y) -

iy = [E@DE@),-EZ B| © |+ o) =

9 E(Y) =
. = 1,000 |+ o= E(Y) + oD). (4.10) ge
: 2%
y Therefore, we proved o
y my- E(Y) 0.

: Note (4.10) is true, because

M [E( Z,).E( Zy)...E(Zp)] = (1,00,.0) B.

N (ii) Necessity: Assume that as n —— oo uy 25, E (Y) . From (4.6), we know that
2 by 5 E (X)€W X’ X)) E(WOIXY)

. Hence

; E(Y) =[E(X) EW' X X)™E(WIXY)

: -
: E(W!ZY) T
N E(W1ZY o
N = (d;d,...dp) ( _ 20| E(f; wld zY), :-:3
[ E( w-! ZPY) 1 Sy
‘

: -19 -
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where (dj, d;,., d) = E (X ) [E( W™ X’ X)]™. Therefore

E([f;w-‘djzj-l]Y)=o,foranyY,
Fl

PNl | [ S

which implies

$ W4, =1 with probability 1.
=

Hence,

]

W= ﬁ 4 Z. ]
Fl
This completes the proof of Theorem 4.1. 0
As we can see from the proof of Theorem 4.1, the i.i.d. assumption for {( X, Y;
)} is not necessary. All we need is formula (4.6) which is implied by (4.4) and (4.5).
Note that (4.4) and (4.5) hold for simple random sampling without replacement.

Hence, Theorem 4.1 is an extension of Theorem 3.1. One possible application of

Theorem 4.1 would be in the missing data problem. Suppose that some of the X- ]
components among the sample are missing, and other data may have only X- :
d

component with y missing. In this case, |.1 may be chosen as a component-wise aver- :
a ,

h

age of X in the sample. ;
3

b

1

:

]

]

1
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